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Abstract: Introduction. The majority of known finite difference schemes are designed for rectangular grids as
rectangular grids are natural for many applications. However, these schemes are inapplicable to the analysis of
images registered by Medical Tactile Endosurgical Complex (MTEC) — a novel device for intraoperative exami-
nation of tactile properties of tissues, as sensors of MTEC are located in nodes of a hexagonal grid.
Objectives. The aim of the research was to develop a finite difference scheme for gradient estimation designed for
hexagonal grids, study theoretical properties of this scheme, and examine classification of MTEC-registered tactile
images that included gradient estimation in its feature space.
Materials and Methods. Classification was tested using a library of artificial samples which contained six sample
classes. Registration of tactile images was performed by 20 mm MTEC mechanoreceptors under five different
angles which varied from 0◦ to 14◦; 450 tactile images were registered in total. Classification algorithm utilized
k-nearest neighbors classifier applied to a set of features associated with the most informative frame of a tactile
image. Multiple stratified 5-fold cross-validation with 10 repeats was used for parameter optimization and mea-
suring classifier accuracy.
Result. A finite difference scheme for gradient estimation on a hexagonal grid was constructed as a solution of
a minimization problem directly related to the definition of differentiability. Error estimate for this scheme was
obtained under C2 assumption both for the case of error-free measurements of function values and for the case of
measurements with errors. Classification of instrumentally registered tactile images that used gradient estimation
space had mean accuracy above 90% for all classes of samples except one.
Conclusion. The designed finite difference scheme for gradient estimation on a hexagonal grid extends a list
of mathematical methods applicable to an automated analysis of tactile images registered by MTEC. In particu-
lar, usage of feature space that includes gradient estimates increases the accuracy of multi-class classification of
MTEC-registered tactile images.
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1 Introduction
Gradient-based methods are widely used in process-
ing of various types of data, including visual images
and video streams [1, 2, 3, 4]. It was natural to hy-
pothesize that these methods are also efficient for the
analysis of instrumentally registered medical tactile
images. Manual palpation, which is widely applied
in open surgery, is inapplicable in minimally invasive
surgery, including robot-assisted surgery [5, 6], and
novel devices for instrumental registration of medical
tactile images are being developed. While a number
of devices for non-operative tactile examination exists
[7, 8, 9], to the best of out knowledge the Medical
Tactile Endosurgical Complex (MTEC) [10, 11, 12]
is the only commercially available medical device for

intraoperative instrumental palpation.

Currently results of intraoperative instrumental
tactile examination performed with MTEC are repro-
duced visually in real time, and optionally a repro-
duction on a specially designed tactile display is per-
formed [11, 12]. But the results are analyzed by a sur-
geon in fact with no support from any automated de-
cision support system, which may be complicated in
the initial segment of the learning curve and requires
retaining of constant attention. Thus creating algo-
rithms for automated analysis of instrumentally regis-
tered medical tactile images is a developing field with
direct application in clinical medicine.

In [13] it was shown that in spite of low reso-
lution of tactile images registered by MTEC both in
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terms of a number of tactile pixels and a number of
discretization levels, a successful automated classifi-
cation of these images is possible by a combination
of conventional machine learning methods with a spe-
cific feature set and a number of additional steps spe-
cially developed for MTEC-registered data analysis.
Yet, in that study classification of tactile images was
studied in case of nearly perfect angle in the tactile ex-
amination procedure, and it is known that deviation of
a contact angle from 90◦ in MTEC-based tactile ex-
amination significantly affects the result [12]. In the
present research we examined whether reliable clas-
sification of tactile images is still possible in case of
essential deviations of the contact angle from 90◦ dur-
ing examination. In particular, we tested classifica-
tion reliability of k-nearest neighbors method applied
for a feature space which includes gradient field of
a selected tactile frame. As sensor of MTEC are lo-
cated in the nodes of hexagonal grid, and standard
finite-difference schemes are designed for rectangular
grids, we developed a scheme for gradient estimation
designed specifically for hexagonal grids.

The rest of the paper is organized as follows. In
the Materials and methods section we give technical
details related to the structure of tactile images, uti-
lized library of tactile images and utilized classifica-
tion approach. In the section Gradient estimation on
hexagonal grids we present a finite-difference scheme
for gradient estimation design for hexagonal grids and
discuss properties of this scheme. Finally, in the sec-
tion Classification results we evaluate reliability of
automated classification of instrumental tactile images
based on the combination of k-nearest method and a
specific feature space which includes gradient charac-
teristics.

2 Materials and methods
2.1 A structure of tactile images
In a MTEC-based tactile examination tactile images
are registered by a tactile mechanoreceptor. Its oper-
ating head is equipped with pressure sensors located
in nodes of a hexagonal grid. Sensors perform mea-
surements 100 times per second and send measure-
ment results to a computer which performs further
processing. Thus, a tactile image consists of indi-
vidual tactile frames containing values simultaneously
registered by sensors. Each value after discretization
is represented by a 8-bit integer, and the number of
values in one frame is 7 for the mechanoreceptor with
diameter 10 mm and 19 for the mechanoreceptor with
diameter 20 mm. In the present research, similarly
to [13], we used a library of tactile images registered
by mechanoreceptors with 19 censors.

We note that tactile images registered during ex-
aminations of the same samples may differ essentially
due to small shifts and rotations of a mechanorecep-
tor, differences in the pressing speed and force, differ-
ences in contact angles, etc.

2.2 A library of instrumentally registered
tactile images

The study used a set of samples similar to the ones
used in [13]. Specifically, the samples were made of a
soft silicone (Shore hardness 00-10A) and had a shape
of a rectangular box with size 40 mm × 35 mm ×
10 mm. Samples belonged to one of six classes that
differed in the hard embedment:

• E-type: samples without any embedments;

• LF-type and LC-type: samples with a spherical
cap embedment with base diameter 8 mm and
height 2.4 mm, oriented for tactile examination
from the convex side and the flat side, respec-
tively;

• SF-type and SC-type: samples similar to LF-type
and LC-type but with different cap size (base di-
ameter 4.7 mm and height 1.7 mm);

• T-type: samples with a horizontally oriented seg-
ment of a medical perfusion line (B. Braun Orig-
inal Perfusion Line, diameter ca 2 mm) of length
20 mm.

The lot of manufactured samples contained at least 5
samples of each type. We performed 450 examina-
tions of these samples with strictly controlled 5 differ-
ent contact angles, i.e. totally 75 images per type (15
images for each contact angle). Contact angles had
deviations from 90◦ equal to 0◦, 3.6◦, 7.1◦, 10.6◦ and
14.0◦.

2.3 Feature space and classifier type
First, for each tactile image we found the most infor-
mative frame, which was defined as the frame with
maximum standard deviation of intraframe values. It
allowed to reduce dimension and obtain certain invari-
ance to some examination properties, e.g. pressing
speed. Then we considered a series of frames form-
ing a neighborhood of the most informative frame
(with mp and mf frames preceding and following
the most informative one, respectively) and for each
sensor computed a mean over this series. This pro-
cedure can be treated as smoothing registered values
over time axis, and taking the result of smoothing for
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the time moment associated with the most informa-
tive frame. After that we performed scaling of result-
ing “smoothed” frame by dividing its values by their
maximum (this scaling brought all values to [0, 1] seg-
ment). Let f denote the result of these steps (i.e., f is
smoothed and scaled most informative tactile frame).

Having f , we computed gradient

∇f =
(
∂f
∂x ,

∂f
∂y

)T
as described in the section

Gradient estimation on hexagonal grids.

Finally, for each of 19 sensors we computed stan-
dard deviation of values registered by this sensor in a
tactile image and also scaled the result to [0, 1] inter-
val by dividing on the maximum standard deviation.
N largest deviations were included to the features list.

Thus, (57 + N )-element vector was associated
with each tactile image. This vector contained 19 val-
ues comprising smoothed and scaled most informative
frame, 38 estimates of partial derivatives (19 estimates
for each axis), and N largest scaled deviations.

In the resulting (57 + N )-dimensional feature
space we we utilized k-nearest neighbor classifier [14,
15] for discriminating samples between six classes de-
scribed above. The selection of k-nearest neighbors
method was motivated by the results of the study [13].
Multiple stratified 5-fold cross-validation with 10 re-
peats was used for parameter optimization and mea-
suring classifier accuracy.

In order to increase classification reliability, we
used the trick described in [13]. Namely, for each tac-
tile image from the training set we performed cloning
by adding results of orthogonal transformations which
map the sensor-associated hexagonal grid on itself.
The transformations included rotation by angles mul-
tiple to 60◦ and symmetric reflections. Thus, for each
tactile image we added 11 new images. The trick es-
sentially improved classification quality.

3 Gradient estimation on hexagonal
grids

In this section we present a final-difference scheme
for estimating a gradient of a scalar field designed spe-
cially for hexagonal grids. We consider a real-valued
differentiable function (scalar field) f(x, y) defined in
the closed regular hexagon G with center (x0, y0) and
edge lengths h (Fig. 1) with known values in the cen-

Figure 1: Regular hexagon with the center and ver-
tices coordinates.

ter and vertices of G (see Fig. 1):

f0 = f(x0, y0),

f1 = f(x0 + h, y0),

f2 = f(x0 +
1

2
h, y0 +

√
3

2
h),

f3 = f(x0 −
1

2
h, y0 +

√
3

2
h),

f4 = f(x0 − h, y0),

f5 = f(x0 −
1

2
h, y0 −

√
3

2
h),

f6 = f(x0 +
1

2
h, y0 −

√
3

2
h).

The aim is to estimate gradient of f in the point
(x0, y0), i.e, to estimate

∇f
∣∣∣
(x0,y0)

=

(
∂f

∂x

∣∣∣
(x0,y0)

,
∂f

∂y

∣∣∣
(x0,y0)

)T
=

= (fx(x0, y0), fy(x0, y0))
T ,

based on the values fi, i ∈ {0, 1, 2, 3, 4, 5, 6}.
As f(x, y) is differentiable in the point (x0, y0),

f(x, y) = f(x0, y0) + fx(x0, y0) · (x− x0) +

+ fy(x0, y0) · (y − y0) + o‖l‖→0(‖l‖),

where (x, y) is an arbitrary point in G and
l = (x− x0, y − y0)T ,

‖(x1, . . . , xd)T ‖ =
(∑d

i=1 x
2
i

) 1
2 . Our ap-

proach is based on finding an estimate
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(
f̂x(x0, y0), f̂y(x0, y0)

)T
for ∇f

∣∣∣
(x0,y0)

which

provides the best fit to the condition of differentia-
bility for the vertices of G. That is, we consider the
following optimization problem:∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



f1−f0
h

f2−f0
h

f3−f0
h

f4−f0
h

f5−f0
h

f6−f0
h


−



1 0
1
2

√
3
2

−1
2

√
3
2

−1 0

−1
2 −

√
3
2

1
2 −

√
3
2


×

(
f̂x(x0, y0)

f̂y(x0, y0)

)
∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

−→

−→ min
f̂x,f̂y

.

The solution of the problem can be obtained by
the conventional method of least squares [16]. The
solution has the following form:

f̂x(x0, y0) =
f1 − f0

3h
+
f2 − f0

6h
+
f6 − f0

6h
−

− f4 − f0
3h

− f3 − f0
6h

− f5 − f0
6h

=

=
2f1 + f2 − f3 − 2f4 − f5 + f6

6h
, (1)

f̂y(x0, y0) =

=
f2 − f0
2
√

3h
+
f3 − f0
2
√

3h

f5 − f0
2
√

3h
− f6 − f0

2
√

3h
=

=
f2 + f3 − f5 − f6

2
√

3h
. (2)

The following theorem provides the error esti-
mate for the presented scheme applicable for func-
tions f ∈ C2(G).

Theorem 1 Let f(x, y) be twice continuously differ-
entiable in G. Then for partial derivative estimates
defined by formulas 1, 2 the following error estimates
hold:∣∣∣f̂x(x0, y0)− fx(x0, y0)

∣∣∣ < C1Mh,∣∣∣f̂y(x0, y0)− fy(x0, y0)∣∣∣ < C2Mh.

Here C1, C2 are absolute constants, and

M = max
{

max
ξ∈G

∣∣∣∂2f
∂x2

∣∣
ξ

∣∣∣,
max
ξ∈G

∣∣∣ ∂2f
∂x∂y

∣∣
ξ

∣∣∣,max
ξ∈G

∣∣∣∂2f
∂y2

∣∣
ξ

∣∣∣}.
Proof: The proof is based on the Taylor polynomial
approximation of the function f(x, y) with the La-
grange form of the remainder:

f(x, y) = f(x0, y0) + fx(x0, y0) · (x− x0) +

+ fy(x0, y0) · (y − y0) +
1

2
d2f |ξ(x− x0, y − y0),

where (x, y) ∈ G, ξ is a point on two-dimensional
interval from the point (x0, y0) to the point (x, y) and

d2f |ξ(∆x,∆y) =

=
∂2f

∂x2

∣∣∣
ξ
(∆x)2 + 2

∂2f

∂x∂y

∣∣∣
ξ
∆x∆y +

∂2f

∂y2

∣∣∣
ξ
(∆y)2.

Second differential can be trivially estimated in terms
of M :

d2f |ξ(∆x,∆x) ≤ 4M(∆x)2 (ξ ∈ G).

Now let us proceed to the main computations:∣∣∣f̂x(x0, y0)− fx(x0, y0)
∣∣∣ =

=
∣∣∣f1 − f0

3h
+
f2 − f0

6h
+
f6 − f0

6h
−

− f4 − f0
3h

− f3 − f0
6h

− f5 − f0
6h

− fx(x0, y0)
∣∣∣ =

=
∣∣∣1
3

(
fx(x0, y0) +

1

2h
d2f |ξ1(h, 0)

)
− 1

3
fx(x0, y0)+

+
1

6

(1

2
fx(x0, y0) +

√
3

2
fy(x0, y0)+

+
1

2h
d2f |ξ2(

1

2
h,

√
3

2
h)
)
− 1

12
fx(x0, y0)−

−
√

3

12
fy(x0, y0) +

1

6

(1

2
fx(x0, y0)−

√
3

2
fy(x0, y0)+

+
1

2h
d2f |ξ3(

1

2
h,−
√

3

2
h)
)
− 1

12
fx(x0, y0)+
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+

√
3

12
fy(x0, y0)−

1

3

(
−fx(x0, y0)+

+
1

h
d2f |ξ4(−h, 0)

)
− 1

3
fx(x0, y0)−

− 1

6

(
−1

2
fx(x0, y0) +

√
3

2
fy(x0, y0)+

+
1

2h
d2f |ξ5(−1

2
h,

√
3

2
h)
)
− 1

12
fx(x0, y0)+

+

√
3

12
fy(x0, y0)−

1

6

(
−1

2
fx(x0, y0)−

−
√

3

2
fy(x0, y0) +

1

2h
d2f |ξ6(−1

2
h,−
√

3

2
h)
)
−

− 1

12
fx(x0, y0)−

√
3

12
fy(x0, y0)

∣∣∣ ≤
≤ 1

6h

(∣∣∣d2f |ξ1(h, 0))
∣∣∣+
∣∣∣d2f |ξ4(−h, 0))

∣∣∣+
+

1

4

(∣∣∣d2f |ξ2(
1

2
h,

√
3

2
h)
∣∣∣+
∣∣∣d2f |ξ3(

1

2
h,−
√

3

2
h)
∣∣∣+

+
∣∣∣d2f |ξ5(−1

2
h,

√
3

2
h)
∣∣∣+

+
∣∣∣d2f |ξ6(−1

2
h,−
√

3

2
h)
∣∣∣)) ≤ 2Mh.

∣∣∣f̂y(x0, y0)− fy(x0, y0)∣∣∣ =
∣∣∣f2 − f0

2
√

3h
+
f3 − f0
2
√

3h
−

− f5 − f0
2
√

3h
− f6 − f0

2
√

3h
− fy(x0, y0)

∣∣∣ =

=
1

2
√

3

∣∣∣(1

2
fx(x0, y0) +

√
3

2
fy(x0, y0)+

+
1

2h
d2f |η1(

1

2
h,

√
3

2
h)
)
− 1

2
fx(x0, y0)−

−
√

3

2
fy(x0, y0) +

(
−1

2
fx(x0, y0)+

+

√
3

2
fy(x0, y0) +

1

2h
d2f |η2(−1

2
h,

√
3

2
h)
)

+

+
1

2
fx(x0, y0)−

√
3

2
fy(x0, y0)−

−
(
−1

2
fx(x0, y0)−

−
√

3

2
fy(x0, y0) +

1

2h
d2f |η3(−1

2
h,−
√

3

2
h)
)
−

− 1

2
fx(x0, y0)−

√
3

2
fy(x0, y0)−

(1

2
fx(x0, y0)−

−
√

3

2
fy(x0, y0) +

1

2h
d2f |η4(

1

2
h,−
√

3

2
h)
)

+

+
1

2
fx(x0, y0)−

√
3

2
fy(x0, y0)

∣∣∣ ≤
≤ 1

4
√

3h

(∣∣∣d2f |η1(
1

2
h,

√
3

2
h)
∣∣∣+

+
∣∣∣d2f |η2(−1

2
h,

√
3

2
h)
∣∣∣+
∣∣∣d2f |η3(−1

2
h,−
√

3

2
h)
∣∣∣+

+
∣∣∣d2f |η4(

1

2
h,−
√

3

2
h)
∣∣∣) ≤ 4M√

3
h,

so the above error estimate holds with C1 = 2 and
C2 = 4√

3
.

ut
Note that if we observe values f0, . . . , f6 with

measurement error ε, i.e. we register values f̃i which
satisfy the inequalities |f̃i − fi| < ε, the following
form of the error estimate holds:∣∣∣f̂x(x0, y0)− fx(x0, y0)

∣∣∣ < C1h+
8ε

3h
,

∣∣∣f̂y(x0, y0)− fy(x0, y0)∣∣∣ < C2h+
8ε

2
√

3h
.

These upper bounds illustrate that the scheme is ap-
plicable when measurement errors are present in case
if the measurement error ε as essentially smaller than
grid edge length h.

4 Classification results
Cross-validation showed that the optimal value for pa-
rameter k was 1 (which corresponds to simple nearest
neighbor model), optimal metric was `1 (in this metric
the distance between points x = (x1, . . . , xd) and y =

(y1, . . . , yd) is defined as ρ(x, y) =
∑d

i=1 |xi − yi|),
and optimal values for parameters mp,mf , N were 4,
7 and 4, respectively.

In order to compare the reliability of classifica-
tion provided by the developed approach with the re-
liability of classification provided by the previously
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developed classifier [13] we tested both method on the
library of instrumentally registered tactile images de-
scribed in the section Materials and methods. Param-
eters of the method from [13] were optimized for this
library using the same cross-validation approach.

The main difference between two classifiers is
in the feature spaces they use: the feature space for
the proposed classifier includes estimates of gradient
field, while feature space for the previously developed
classifier includes only smoothed and scaled values of
the most informative frame and largest scaled devi-
ations of measurement results for individual sensors.
There are also some additional minor differences be-
tween the classifiers in scaling of intraframe pressure
values and measurement deviations.

Results of 5-fold cross-validation with 10 repeats
are summarized in Fig. 2. Visually observable supe-
riority of the proposed method is verified by the re-
sults of the statistical analysis: while no significant
difference in classification reliability is observed for
E-type, SC-type and T-type samples (cut-off 0.05),
for the LF-type, LC-type and SF-type samples paired
Wilcoxon signed-rank test resulted in p-values equal
to 1.2 × 10−2, 1.3 × 10−3 and 1.0 × 10−4, respec-
tively.

5 Conclusion
Automated analysis of instrumentally registered tac-
tile images is a novel domain of applied mathemat-
ics which is motivated by advances in medical tech-
nologies and introduction of special purpose medical
devices. In particular, MTEC allows intraoperative in-
strumental registration of tactile images in endoscopic
surgery where conventional manual palpation is im-
possible.

A set of classical methods, such as k-nearest
neighbors classification, have been shown to be effi-
cient for the analysis of tactile images. Yet, specific
properties of tactile images dictated by the hardware
should be also taken into consideration. One of these
properties is the geometry of sensors in the operat-
ing head of a MTEC mechanoreceptor, which is nat-
urally associated with a hexagonal grid. The majority
of known finite difference schemes are designed for
rectangular grids and thus can not be applied to the
analysis of MTEC-registered tactile images.

In this study we present a finite-difference scheme
for estimating gradient field designed specifically for
hexagonal grids. The scheme is constructed as a so-
lution of a minimization problem directly related to
the definition of differentiability. We discuss theo-
retical properties of this scheme, namely, error esti-
mates both for the case of error-free measurements

of function values and for the case of measurements
with errors. We also show that usage of feature space
that includes gradient estimates increases the accuracy
of multi-class classification of MTEC-registered tac-
tile images and provides reliable classification even in
case of essential deviations of the contact angle from
90◦ during examination.
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